如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点.(1)证明:直线平面;(2)若,求二面角的平面角的余弦值.
设数列的前项和为, (1)求,; (2)设,证明:数列是等比数列; (3)求数列的前项和为.
已知都是正数, (1)若,求的最大值 (2)若,求的最小值.
已知函数, (1)当时,解不等式 (2)若函数有最大值,求实数的值.
已知数列是等差数列,且 (1)求数列的通项公式 (2)令,求数列前n项和.
已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+(). (1)求数列和的通项公式; (2)求数列{前项和为,问>的最小正整数是多少?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号