如图,在三棱锥中,直线
平面
,且
,又点
,
,
分别是线段
,
,
的中点,且点
是线段
上的动点.
(1)证明:直线平面
;
(2)若,求二面角
的平面角的余弦值.
(本小题满分16分)经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.
(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数
关系式;
(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.
(1)求椭圆C的标准方程;
(2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求证:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1.
(本小题满分14分)已知函数f(x)=2
sinxco
sx-2sin2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-,
]上的最大值和最小值.
已知.
(1)时,求
的极值
(2)当时,讨论
的单调性。
(3)证明:(
,
,其中无理数
)