马老师从课本上抄录一个随机变量X的概率分布律如下表
x |
1 |
2 |
3 |
P(ε=x) |
? |
! |
? |
请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ε)=________.
已知是虚数单位,则
=_____________.
如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.
设l,m是两条不同的直线,α是一个平面,则下列命题正确的个数为________.
①若l⊥m,m⊂α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m⊂α,则l∥m;④若l∥α,m∥α,则l∥m.
若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2eln x(其中e为自然对数的底数),根据你的数学知识,推断h(x)与φ(x)间的隔离直线方程为________.
某同学为研究函数f(x)=+
(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).
请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是________.