已知=
,那么sin
的值为 ,cos2
的值为
正实数数列{an}中,a1=1,a2=5,且{}成等差数列.
(1)证明:数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.
如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.
(1)证明:B,D,H,E四点共圆;
(2)证明:CE平分∠DEF.
如图,两条相交线段、
的四个端点都在抛物线
上,其中,直线
的方程为
,直线
的方程为
.
(1)若,
,求
的值;
(2)探究:是否存在常数,当
变化时,恒有
?
设函数,
,
.
(1)若,求
的单调递增区间;
(2)若曲线与
轴相切于异于原点的一点,且
的极小值为
,求
的值.