(本小题满分14分)
在数列中,
为其前
项和,满足
.
(1)若,求数列
的通项公式;
(2)若数列为公比不为1的等比数列,求
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,设点
.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段
中点
的轨迹方程;
(3)过原点的直线交椭圆于点
,求
面积的最大值。
设数列{}的前n项和为
,且
=1,
,数列{
}满足
,点P(
,
)在直线x―y+2=0上,
.
(1)求数列{ },{
}的通项公式;
(2)设,求数列{
}的前n项和
.
制订投资计划时,不仅要考虑可能要获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
已知函数
(1)若关于的不等式
的解集是
,求实数
的值;
(2)若,解关于
的不等式
.