已知顶点为原点的抛物线
的焦点
与椭圆
的右焦点重合,
与
在第一和第四象限的交点分别为
.
(1)若是边长为
的正三角形,求抛物线
的方程;
(2)若,求椭圆
的离心率
.
在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.
已知命题:“若
则二次方程
没有实根”.
(1)写出命题的否命题;
(2)判断命题的否命题的真假, 并证明你的结论.
已知抛物线,点
,过
的直线
交抛物线
于
两点.
(1)若,抛物线
的焦点与
中点的连线垂直于
轴,求直线
的方程;
(2)设为小于零的常数,点
关于
轴的对称点为
,求证:直线
过定点
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的最小值为
,求证:
.
在斜三棱柱中,侧面
平面
,
,
为
中点.
(1)求证:;
(2)求证:平面
;
(3)若,
,求三棱锥
的体积.