如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数;
(2)求AB的长.
如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC、BD相交于点0,将直线AC绕点0顺时针旋转,分别交BC、AD于点E、F.
(1)求证:当旋转角为90°时,四边形ABEF为平形四边形;
(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点0顺时针旋转的度数.
某种子培育基地用A、B、C、D、四种型号的小麦种子共2000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%。根据实验数据绘制了图1和图2两幅尚不完整的统计图.(说明:图1表示四种型号种子占总粒数的比例,图2表示四种型号种子的发芽数)
(1)D型号种子粒数是多少?并将图2的统计图补充完整;
(2)通过计算说明,应选哪一个型号的种子推广;
(3)若将所有的已发芽的种子放在一起,从中随机取出一粒,求取到B型号发芽种子的概率.
如图,在平面直角坐标系中,△ABC与△A1B1C1关于点E成中心对称
(1)画出对称中心E,并写出E、A、C的坐标;
(2)P(a,b)是△ABC的边上AC上一点,△ABC经平移后,点P的对应点是P2(A+6,B+2),请画出上述平移后的△A2B2C2,并判断△A2B2C2与△A1B1C1的位置关系(直接写出结果).
已知,如图,EG∥AF.请你从①DE =" DF" ;②AB =" AC" ③BE = CF中,选择两个作为已知条件,剩余一个作为结论,写出一个真命题(只需写出一种情况,)并加以证明.
已知:EC∥AF,,,
求证:.
证明
(本题12分)阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高”(h).我们可行出生种计算三角形面积的新方示:,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)求△ABC的铅垂高CD及S△ABC
(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使,
若存在,求出P点的坐标;若不存在,请说明理由.