如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标.
(本小题10分)
如图,在平面直角坐标系中,的三个顶点的坐标分别为
.
(1)画出
关于x轴对称的
,并写出点
的坐标.
(2)画出
绕原点
顺时针方向旋转90°后得到的
,并写出点
的坐标.
(3)将
平移得到
,使点
的对应点是
,点
的对应点是
,点
的对应点是
,在坐标系中画出
,并写出点
,
的坐标.
(本小题8分)
如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.
供选择的三个条件(请从其中选择一个):
①AB=ED;②BC=EF;③∠ACB=∠DFE.
(本小题10分)(1)解不等式:
(2)解方程:
(本小题10分)(1)计算:
;
(2)化简:
.在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连结EQ.设动点运动时间为x秒.(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在线段BD(不包括点B、D)上移动时,设△EDQ的面积为
,求
与
的函数关系式,并写出自变量
的取值范围;
(3)当
为何值时,△EDQ为直角三角形.