滑板运动是一项陆地上的“冲浪运动”,具有很强的观赏性与趣味性。下坡式滑行轨道可H简化为如下模型:如图所示,abcdf为同一竖直平面内的滑行轨道,其中ab、df两段均为倾角=37o的斜直粗糙轨道,bc为一段半径为R=5m的光滑圆弧,圆弧与ab相切于磊点,圆弧圆心O在c点的正上方。已知ab之间高度差H1=5rn,cd之间高度差H2=2.25m,运动员连同滑板的总质量m=60kg。运动员从a点由静止开始下滑后从C点水平飞出,落在轨道上的e点,经短暂的缓冲动作后沿斜面方向下滑。de之间的高度差H3="9" m,运动员连同滑板可视为质点,忽略空气阻力,取g =10m/s2,sin37o=0.6,cos37o=0.8 。求:
(1)运动员刚运动到c点时的速度大小;
(2)运动员(连同滑板)刚运动到c点时对轨道的压力;
(3)运动员(连同滑板)在由a点运动到b点过程中阻力对它做的功。
如图所示,甲、乙两物体自同一水平线上同时开始运动,甲沿顺时针方向做匀速圆周运动,圆半径为R;乙做自由落体运动,当乙下落至A点时,甲恰好第一次运动到最高点B,求甲物
体匀速圆周运动的向心加速度.
如图所示A、B、C分别是地球表面上北纬30°、南纬60°和赤道上的点.若已知地球半径为R,自转的角速度为ω0,
求:(1)A、B两点的线速度大小.
(2)A、B、C三点的向心加速度大小之比.
如图所示,把一个质量m=1 kg的物体通过两根等长的细绳与竖直杆上A、B两个固定点相连接,绳a、b长都是1 m,AB长度是1.6 m,直杆和球旋转的角速度等于多少时,b绳上才有张力?
如图所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半,内壁上有一质量为m的小物块.求:
(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
(2)当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度.
如图17所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半。内壁上有一质量为m的小物块。求
①当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
②当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。