一辆汽车的质量为 m,其发动机的额定功率为 P0。从某时刻起汽车以速度 v0 在水平公路上沿直线匀速行驶,此时汽车发动机的输出功率为 ,接着汽车开始沿直线匀加速行驶,当速度增加到
时,发动机的输出功率恰好为 P0 。如果汽车在水平公路上沿直线行驶中所受到的阻力与行驶速率成正比,求:
(1)汽车在水平公路上沿直线行驶所能达到的最大速率 vm ;
(2)汽车匀加速行驶所经历的时间和通过的距离;
(3)为提高汽车行驶的最大速率,请至少提出两条在设计汽车时应考虑的建议。
如图所示,用销钉固定的导热活塞把水平放置的导热气缸分隔成容积相同的两部分,分别封闭着A、B两部分理想气体:A部分气体压强为pA0 = 2.5×105 Pa,B部分气体压强为PB0 = 1.5×105 Pa。现拔去销钉,待活塞重新稳定后,(外界温度保持不变,活塞与气缸间摩擦可忽略不计,整个过程无漏气发生)
①求此时A部分气体体积与原来体积之比;
②判断此过程中A部分气体是吸热还是放热,并简述理由。
如图所示,两块平行金属极板MN水平放置,板长L =" 1" m.间距d = m,两金属板间电压UMN = 1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2,已知A、F、G处于同一直线上.B、C、H也处于同一直线上.AF两点距离为
m。现从平行金属极板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10 kg,带电量q = +1×10-4 C,初速度v0 = 1×105 m/s。
(1)求带电粒子从电场中射出时的速度v的大小和方向
(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1
(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件。
如图所示,一质量为m =" 0.5" kg的小滑块,在F =" 4" N水平拉力的作用下,从水平面上的A处由静止开始运动,滑行s =" 1.75" m后由B处滑上倾角为37°的光滑斜面,滑上斜面后拉力的大小保持不变,方向变为沿斜面向上,滑动一段时间后撤去拉力。已知小滑块沿斜面上滑到的最远点C距B点为L =" 2" m,小滑块最后恰好停在A处。不计B处能量损失,g取10 m/s2,已知sin37° = 0.6 cos37° = 0.8。试求:
(1)小滑块与水平面间的动摩擦因数μ。
(2)小滑块在斜面上运动时,拉力作用的距离x。
(3)小滑块在斜面上运动时,拉力作用的时间t。
质量为2kg的平板车B上表面水平且车长为2.5m,原来静止在光滑水平面上,平板车一端静止着一块质量为2kg的物体A,一颗质量为0.01kg的子弹以700m/s的速度水平瞬间射穿A后,速度变为l00m/s,如果A与B之间的动摩擦因数为0.05,且子弹和物体A均可视为质点,重力加速度为g取10m/s2.求:
①A在平板车上运动的最大速度;
②A从B上滑离时,A和B的速度.
如图所示,OBCD为半圆柱体玻璃的横截面,OD为直径,一束由红光和紫光组成的复色光沿AO方向从真空斜射入玻璃,B、C点为两单色光的射出点(设光线在B、C处未发生全反射).已知从B点射出的单色光由O到B的传播时间为t。
①若OB、OC两束单色光在真空中的波长分别为λB、λC,试比较λB、λC的大小(不必说明理由);
②求从C点射出的单色光由O到C的传播时间tC是多少?