如图所示,半径R=0.8m的光滑1/4圆弧轨道固定在光滑水平上,轨道上方的A点有一个可视为质点的质量m=1kg的小物块。小物块由静止开始下落后打在圆弧轨道上的B点但未反弹,在该瞬间碰撞过程中,小物块沿半径方向的分速度即刻减为零,而沿切线方向的分速度不变,此后小物块将沿着圆弧轨道滑下。已知A点与轨道的圆心O的连线长也为R,且AO连线与水平方向的夹角为30°,C点为圆弧轨道的末端,紧靠C点有一质量M=3kg的长木板,木板的上表面与圆弧轨道末端的切线相平,小物块与木板间的动摩擦因数,g取10m/s2。求:
(1)小物块刚到达B点时的速度;
(2)小物块沿圆弧轨道到达C点时对轨道压力FC的大小;
(3)木板长度L至少为多大时小物块才不会滑出长木板?
一光滑圆环固定在竖直平面内,环上套着两个小球A和B(中央有孔),A、B间由细绳连接着,它们处于如图所示位置时恰好都能保持静止状态.此情况下,B球与环中心O处于同一水平面上,A、B间的细绳呈伸直状态,且与水平线成30°角.已知B球的质量为3 kg,求细绳对B球的拉力和A球的质量.(g取10 m/s2)
如右图所示,一固定的楔形木块,其斜面的倾角为θ=30°,另一边与水平地面垂直,顶端有一个定滑轮,跨过定滑轮的细线两端分别与物块A和B连接,A的质量为4m,B的质量为m.开始时,将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升,所有摩擦均忽略不计.当A沿斜面下滑距离x后,细线突然断了.求物块B上升的最大高度H.(设B不会与定滑轮相碰)
如图所示,质量M = 4.0kg的长木板B静止在光滑的水平地面上,在其右端放一质量m = 1.0kg的小滑块A(可视为质点)。初始时刻,A、B分别以v0 = 2.0m/s向左、向右运动,最后A恰好没有滑离B板。已知A、B之间的动摩擦因数μ = 0.40,取g =10m/s2。求:
⑴ A、B相对运动时的加速度aA和aB的大小与方向;
⑵ A相对地面速度为零时,B相对地面运动已发生的位移x;
⑶木板B的长度l。
以速度为=10m/s匀速行驶的汽车在第2s末关闭发动机,以后作匀减速直线运动,第3s内的平均速度是9m/s,试求:
⑴汽车作减速直线运动的加速度a;
⑵汽车在10s内的位移x。
如图甲所示,水平直线MN下方有竖直向上的匀强电场,场强E=N/C。现将一重力不计、比荷
C/kg的正电荷从电场中的O点由静止释放,经过t0=1×10-5s后,通过MN上的P点进入其上方的匀强磁场。磁场方向垂直于纸面向外,以电荷第一次通过MN时开始计时,磁感应强度按图乙所示规律周期性变化。
(1)求电荷进入磁场时的速度v0;
(2)求图乙中t=2×10-5s时刻电荷与P点的距离;
(3)如果在P点右方d=105 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间(保留三位有效数字)。