如图所示,匀强磁场B1垂直于光滑金属导轨平面向里,导体棒ab在平等于导轨的接力F作用下做匀加速运动,使电压表计数保持U不变。已知变阻器最大阻值为R1,定值电阻阻值为R2,平行金属板MN相距为d。一个带电荷量为+q,质量为m的粒子,由静止开始从O1加速经O2小孔垂直AC边射入匀强磁场区。已知该磁场的磁感应强度为B2,方向垂直纸面向外,其边界AD距O1O2的连线的距离为h。
(1)R1的滑动头位于最右端时,MN两极间电场强度多大?
(2)调节R1的滑动头,使MN间电压为U时,粒子进入B2磁场后击中AD边界,求粒子在磁场中沿AD边界方向的射程S。(不计粒子重力)
(3)判断拉力F能否为恒力以及F的方向(不需要说明理由)
如图所示,为一直角三棱镜的截面,其顶角
,BC边长为a,棱镜的折射率为
,P为垂直于直线BCO的光屏。现有一宽度等于AB的平行单色光束垂直射向AB面,求在光屏P上被折射光线照亮的光带的宽度。
(已知;
)
一圆柱形气缸,质量M为10 kg,总长度L为40 cm,内有一厚度不计的活塞,质量m为5 kg,截面积S为50 cm2,活塞与气缸壁间摩擦不计,但不漏气,当外界大气压强p0为1´105 Pa、温度t0为7°C时,如果用绳子系住活塞将气缸悬挂起来,如图所示,气缸内气体柱的高L1为35 cm,(g取10 m/s2)求:
①此时气缸内气体的压强;
②当温度升高到多少摄氏度时,活塞与气缸将分离。
如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N。现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°。此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N点飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°)。求:
⑴ 电子进入圆形磁场区域时的速度大小;
⑵ 0≤x≤L区域内匀强电场场强E的大小;
⑶ 写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式。
消防队员在某高楼进行训练,他要从距地面高h=36m处的一扇窗户外沿一条竖直悬挂的绳子滑下,在下滑过程中,他先匀加速下滑,此时手脚对悬绳的压力=640N,紧接着再匀减速下滑,此时手脚对悬绳的压力
=2080N,滑至地面时速度恰为0。已知消防队员的质量为m=80kg,手脚和悬绳间的动摩擦因数为μ=0.5,g=10m/s2,求:
(1)分别求出他在加速下滑、减速下滑两过程中的加速度大小?
(2)他沿绳滑至地面所用的总时间t?
如图(a),小球甲固定于水平气垫导轨的左端,质量m=0.4kg的小球乙可在导轨上无摩擦地滑动,甲、乙两球之间因受到相互作用而具有一定的势能,相互作用力沿二者连线且随间距的变化而变化。现已测出势能随位置x的变化规律如图(b)中的实线所示。已知曲线最低点的横坐标x0=20cm,虚线①为势能变化曲线的渐近线,虚线②为经过曲线上某点的切线。
(1)将小球乙从x1=8cm处由静止释放,小球乙所能达到的最大速度为多大?
(2)假定导轨右侧足够长,将小球乙在导轨上从何处由静止释放,小球乙不可能第二次经过x0=20cm的位置?并写出必要的推断说明;
(3)若将导轨右端抬高,使其与水平面的夹角α=30°,如图(c)所示。将球乙从x2=6cm处由静止释放,小球乙运动到何处时速度最大?并求其最大速度;
(4)在图(b)上画出第(3)问中小球乙的动能Ek与位置x的关系图线。