如下图所示,长为L平台固定在地面上,平台的上平面光滑,平台上放有小物体 A和B,两者彼此接触。物体A的上表面是半径为R(R<<L)的光滑半圆形轨道,轨道顶端有一小物体C,A、B、C的质量均为m。现物体C从静止状态沿轨道下滑,已知在运动 过程中,A、C始终保持接触。试求:
(1)物体A和B刚分离时,物体B的速度。
(2)物体A和B刚分离后,物体C所能达到距台面的最大高度。
(3)判断物体A从平台左边还是右边落地并简要说明理由。
汽车以15m/s的速度做匀速直线运动,见前方有障碍物立即刹车,刹车的加速度大小为5m/s2,则汽车刹车后2s内及刹车后6s内通过的位移之比为多少?
如图甲所示,质量为m、电荷量为e的电子由静止开始经加速电压U1加速后,在水平方向沿O1O2垂直进入偏转电场.已知形成偏转电场的平行板电容器的极板长为L(不考虑电场边缘效应),两极板间距为d,O1O2为两极板的中线,P是足够大的竖直放置的荧光屏,且屏与极板右边缘的距离也为L。求:
(1)粒子进入偏转电场的速度v的大小;
(2)若偏转电场两板间加恒定电压,电子经过偏转电场后正好打中屏上的A点,A点与极板M在同一水平线上,求偏转电场所加电压U2;
(3)若偏转电场两板间的电压按如图乙所示作周期性变化,要使电子经加速电场后在t="0" 时刻进入偏转电场后水平击中A点,试确定偏转电场电压U0以及周期T分别应该满足的条件.
如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,且接触良好,整套装置处于匀强磁场中。金属杆ab中通有大小为I的电流。已知重力加速度为g。
(1)若匀强磁场方向垂直斜面向下,且不计金属杆ab和导轨之间的摩擦,金属杆ab静止在轨道上,求磁感应强度的大小;
(2)若金属杆ab静止在轨道上面,且对轨道的压力恰好为零,需在竖直平面内加一匀强磁场,说明该磁场的磁感应强度大小和方向应满足什么条件;
(3)若匀强磁场方向垂直斜面向下,金属杆ab与导轨之间的动摩擦因数为μ,且最大静摩擦力等于滑动摩擦力。欲使金属杆ab静止,则磁感应强度的最大值是多大?
如图所示,一台直流电动机所加电压为110 V,通过的电流为5 A。该电动机在10 s内把一个质量为50 kg的物体匀速提升了9 m高,求电动机的电功率和电动机线圈的电阻(不计摩擦,g取10 m/s2)。
如图所示,在水平面上放置的相距为0.2m的平行金属导轨与电源、电键、导体棒AB、滑动变阻器可构成闭合电路,磁感应强度为B=0.5T的匀强磁场竖直向下,导体棒AB的质量m=0.5kg,它与轨道之间的动摩擦因数μ=0.05。当电键S闭合时,电路中电流为5A(g取10m/s2).求:
(1)此时导体棒AB受到的安培力大小及方向.
(2)此时导体棒AB的加速度大小.