如图所示,水平放置的足够长的平行金属导轨MN、PQ的一端接有电阻R0,不计电阻的导体棒ab静置在导轨的左端MP处,并与MN垂直.以导轨PQ的左端为坐标原点O,建立直角坐标系xOy,Ox轴沿PQ方向.每根导轨单位长度的电阻为r.垂直于导轨平面的非匀强磁场磁感应强度在y轴方向不变,在x轴方向上的变化规律为:B=B0+kx,并且x≥0.现在导体棒中点施加一垂直于棒的水平拉力F,使导体棒由静止开始向右做匀加速直线运动,加速度大小为a.设导体棒的质量为m,两导轨间距为L.不计导体棒与导轨间的摩擦,导体棒与导轨接触良好,不计其余部分的电阻.
(1)请通过分析推导出水平拉力F的大小随横坐标x变化的关系式;
(2)如果已知导体棒从x=0运动到x=x0的过程中,力F做的功为W,求此过程回路中产生的焦耳热Q;
(3)若B0=0.1T,k=0.2T/m,R0=0.1Ω,r=0.1Ω/m,L=0.5m,
a=4m/s2,求导体棒从x=0运动到x=1m的过程中,通过电阻R0的电荷量q.
汽车与路面的动摩擦因数为μ,公路某转弯处半径为R(设最大静摩擦力等于滑动摩擦力),问:
(1)若路面水平,汽车转弯不发生侧滑,对汽车最大速度为多少?
(2)若将公路转弯处路面设计成外侧高、内侧低,使路面与水平面倾角为α,则汽车以多大速度转弯,可以使车与路面间无摩擦力?
如图 (a)所示,质量m=1 kg的物体沿倾角θ=37°的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v成正比,比例系数用k表示,物体加速度a与风速v的关系如图(b)所示,求:
(1)物体与斜面间的动摩擦因数μ;
(2)比例系数k.(sin37°=0.6,cos37°=0.8,g=10 m/s2)
消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60 kg、训练有素的消防队员从七楼(即离地面18 m的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200 kg,消防队员着地的速度不能大于6 m/s,手和腿对杆的最大压力为1 800 N,手和腿与杆之间的动摩擦因数为0.5,设当地的重力加速度g=10 m/s2.假设杆是固定在地面上的,杆在水平方向不移动.试求:
(1)消防队员下滑过程中的最大速度;
(2)消防队员下滑过程中杆对地面的最大压力;
(3)消防队员下滑的最短的时间.
如图,质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最低点的速度为8m/s,g取10m/s2,求:
(1)小杯在最高点时,绳的拉力;
(2)小杯在最高点时水对小杯底的压力;
(3)为使小杯过最高点时水不流出,在最低点时的最小速率。
已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响。
(1)推导第一宇宙速度v1的表达式;
(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T。