游客
题文

节日期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的顺序,随机抽取第一辆汽车后,每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段后得到如下图的频率分布直方图.
(1)请直接回答这种抽样方法是什么抽样方法?并估计出这40辆车速的中位数;
(2)设车速在的车辆为, ,为车速在上的频数),车速在的车辆为, ,为车速在上的频数),从车速在的车辆中任意抽取辆共有几种情况?请列举出所有的情况,并求抽取的辆车的车速都在上的概率.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)(1)
(本小题满分7分)选修4-2:矩阵与变换
已知曲线绕原点逆时针旋转后可得到曲线
(I)求由曲线变换到曲线对应的矩阵.
(II)若矩阵,求曲线依次经过矩阵对应的变换变换后得到的曲线方程.
(2)(本小题满分7分)选修4—4:坐标系与参数方程
已知直线的参数方程为t为参数),曲线C的极坐标方程为
(1)求曲线C的直角坐标方程;(2)求直线被曲线C截得的弦长.

(本小题满分12分)
(1)(本小题满分5分)选修4-2:矩阵与变换。已知矩阵,A的一个特征值,属于λ的特征向量是,求矩阵A与其逆矩阵.
(2) (本小题满分7分)选修4—4:坐标系与参数方程
已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离.

(本题满分12分)为了防止受到核污染的产品影响我国民众的身体健康,某地要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互没有影响.
(Ⅰ)求该产品不能销售的概率;
(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损
80元(即获利元).已知一箱中有产品4件,记一箱产品获利X元,求EX

某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
( I ) 求这次铅球测试成绩合格的人数;
(II)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求的数学期望和方差.

下表是某小卖部6天卖出热茶的杯数与当天气温的对比表:

气温/℃
26
18
13
10
4
-1
杯数
20
24
34
38
50
64


(Ⅰ)将上表中的数据制成散点图,并判断散点图中温度与饮料杯数是否成线性相关关系?
(Ⅱ)如果把上述关系近似成线性关系的话,经计算得回归方程= bx+ a的系数b= -1.65,请求出回归直线方程来近似地表示这种线性关系.(a的值精确到0.1)
(Ⅲ)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号