在△中,
是角
对应的边,向量
,
,且
.
(1)求角;
(2)函数的相邻两个极值的横坐标分别为
、
,求
的单调递减区间.
定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若f(k·3
)+f(3
-9
-2)<0对任意x∈R恒成立,求实数k的取值范围.
设关于x的函数f(x)=-1-2a+2cos2x-2acosx的最小值为g(a).(1)写出g(a)的表达式;(2)当时,求a的值,并求此时f(x)的最大值。
已知幂函数为偶函数且在区间(0,+∞)上是单调递减函数。(1)求函数f(x)的解析式;(2)讨论函数
的奇偶性。(10分)
(本小题满分12分)
定义在D上的函数,如果满足:对任意
,存在常数
,都有
成立,则称
是D上的有界函数,其中M称为函数
的上界.
已知函数;
.
(1)当a=1时,求函数在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数在
上是以3为上界的有界函数,求实数a的取值范围;
(3)若,函数
在
上的上界是
,求
的取值范围.
(本小题满分12分)
定义在R上的函数满足:对任意实数m,n,总有
,且当
时,
.
(1)试求的值;
(2)判断的单调性并证明你的结论;
(3)若不等式对
恒成立,求实数x的取值范围.