游客
题文

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

一位同学进行五次投实心球的练习,每次投出的成绩如表:

投实心球序次

1

2

3

4

5

成绩 ( m )

10.5

10.2

10.3

10.6

10.4

求该同学这五次投实心球的平均成绩.

如图, AE BD 相交于点 C A = E AC = EC .求证: ΔABC ΔEDC

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点 ( A B 的左侧),且 OA = 3 OB = 1 ,与 y 轴交于 C ( 0 , 3 ) ,抛物线的顶点坐标为 D ( 1 , 4 )

(1)求 A B 两点的坐标;

(2)求抛物线的解析式;

(3)过点 D 作直线 DE / / y 轴,交 x 轴于点 E ,点 P 是抛物线上 B D 两点间的一个动点(点 P 不与 B D 两点重合), PA PB 与直线 DE 分别交于点 F G ,当点 P 运动时, EF + EG 是否为定值?若是,试求出该定值;若不是,请说明理由.

如图, AB O 的弦,过 AB 的中点 E EC OA ,垂足为 C ,过点 B 作直线 BD CE 的延长线于点 D ,使得 DB = DE

(1)求证: BD O 的切线;

(2)若 AB = 12 DB = 5 ,求 ΔAOB 的面积.

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号