游客
题文

在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分。进而,小明继续研究,过四边形的某一顶点的直线能否将该四边形平分为面积相等的两部分?他画出了如下示意图(如图1),得到了符合要求的直线AF.

小明的作图步骤如下:
第一步:连结AC;
第二步:过点B作BE//AC交DC的延长线于点E;
第三步:取ED中点F,作直线AF;
则直线AF即为所求.
请参考小明思考问题的方法,解决问题:
如图2,五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).请你构造一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,并求出该直线的解析式.

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质 一次函数的最值
登录免费查看答案和解析
相关试题

甲、乙、丙三位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学打第一场比赛的概率.

抛物线过点(0,-3)和(2,1),试确定抛物线的解析式,并求出抛物线与x轴的交点坐标.

已知:如图,△ABC中,DAB的中点,且,若 AB=10,求AC的长.

已知,求代数式的值.

已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,最小值为3,此抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.
(1)求抛物线的解析式.
(2)如图1.求点A的坐标及线段OC的长;
(3)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上.求直线BQ的函数解析式;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号