已知(
)是曲线
上的点,
,
是数列
的前
项和,且满足
,
,
.
(1)证明:数列(
)是常数数列;
(2)确定的取值集合
,使
时,数列
是单调递增数列;
(3)证明:当时,弦
(
)的斜率随
单调递增
若sinα=,sinβ=
,且α、β均为锐角,求α+β的值.
已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).
(1)若m∥n,求证:△ABC为等腰三角形;
(2)若m⊥p,边长c=2,角C=,求△ABC的面积.
已知向量m=与n=(3,sinA+
cosA)共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
在△ABC中,角A,B,C的对边分别为a,b,c,C=,a=5,△ABC的面积为10
.
(1)求b,c的值;
(2)求cos的值.
在锐角△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.