古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数 1 , 3 , 6 , 10 . . . ,第 n 个三角形数为 n ( n + 1 ) 2 = 1 2 n 2 + 1 2 n .记第 n 个 k 边形数为 N ( n , k ) ( k ≥ 3 ) ,以下列出了部分 k 边形数中第 n 个数的表达式: 三角形数 N ( n , 3 ) = 1 2 n 2 + 1 2 n , 正方形数 N ( n , 4 ) = n 2 , 五边形数 N ( n , 5 ) = 3 2 n 2 - 1 2 n , 六边形数 N ( n , 6 ) = 2 n 2 - n , … 可以推测 N ( n , k ) 的表达式,由此计算 N ( 10 , 24 ) = .
已知函数,在区间上随机取一,则使得≥0的概率为.
由曲线,以及所围成的图形的面积等于.
若函数有三个单调区间,则的取值范围是 .
函数在区间上的最大值是.
已知函数(),当时函数的极值为,则.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号