已知点是抛物线
上不同的两点,点
在抛物线
的准线
上,且焦点
到直线
的距离为
.
(I)求抛物线的方程;
(2)现给出以下三个论断:①直线过焦点
;②直线
过原点
;③直线
平行
轴.
请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.
(本小题满分13分)
已知圆的方程为:
.
(1)试求的值,使圆
的面积最小;
(2)求与满足(1)中条件的圆相切,且过点
的直线方程.
(本小题满分13分)已知函数
(1)在图5给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.
(本题满分13分)
已知直线:
,
:
,求:
(1)直线与
的交点
的坐标;(2)过点
且与
垂直的直线方程.
(本小题满分13分)在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1
(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图1,在四边形中,点C(1,3).(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.