如图所示,倾角=30°。的光滑斜面MN底端固定一轻弹簧,轻弹簧的上端与滑块A固定连接,弹簧劲度系数k-100N/m,A静止且与距斜面顶端N点相距x=0.10m。另一小滑块B在N点以初速度
沿斜面向下运动,A、B碰撞后具有相同速度但不粘连。B与A分离后,B恰水平进入停放在光滑水平地面上的小车最左端,小车右端与墙壁足够远,小车上表面与半圆轨道最低点P的切线相平,小车与墙壁碰撞时即被粘在墙壁上。已知水平地面和半圆轨道面均光滑,滑块A、B可视为质点且质量均为m=2kg,被A压缩时弹簧存储的弹性势能Ep=0.5J,小车质量M=lkg、长L=l.0m,滑块B与小车上表面间的动摩擦因数
=0.2,g取l0m/s2。求:
(I)滑块B与A碰撞结束瞬间的速度;
(2)小车与墙壁碰撞前瞬间的速度;
(3)为使滑块B能沿圆轨道运动而不脱离圆轨道,对轨道半径R有何要求?
如图所示,一列沿x轴正方向传播的简谐横波,波速大小为0.6 m/s,P点的横坐标为96 cm.从图中状态开始计时,问:
(1)经过多长时间,P质点开始振动?振动时方向如何?
(2)经过多长时间,P质点第一次到达波峰?
如图所示,两个光滑的定滑轮的半径很小,表面粗糙的斜面固定在地面上,斜面的倾角为θ=30°.用一根跨过定滑轮的细绳连接甲、乙两物体,把甲物体放在斜面上且连线与斜面平行,把乙物体悬在空中,并使悬线拉直且偏离竖直方向α=60°.现同时释放甲、乙两物体,乙物体将在竖直平面内振动,当乙物体运动经过最高点和最低点时,甲物体在斜面上均恰好未滑动.已知乙物体的质量为m=1 kg,若取重力加速度g=10 m/s2.求:甲物体的质量及斜面对甲物体的最大静摩擦力.
将一根一端固定的钢锯条自由端挨着圆盘踞的边缘,圆盘上均匀分布着50个齿,求:
(1)当它以10 r/s的转速转动时,钢锯条的振动周期为多少?
(2)当它以6 r/s的转速旋转时,发现钢锯条的振幅最大,可知钢锯条的固有频率是多少?(假定圆盘锯齿始终不脱离钢锯条)
有人利用安装在气球载人舱内的单摆来确定气球的高度.已知该单摆在海平面处的周期是T0.当气球停在某一高度时,测得该单摆周期为T.求该气球此时离海平面的高度h.把地球看作质量均匀分布的半径为R的球体.
一个在竖直方向振动的弹簧振子,其周期为T.当振子由平衡位置O向上运动时,处在与平衡位置O在同一水平线上的另一小球恰以某速度v0开始竖直上抛.求当v0多大时,振子和小球由振动的平衡位置再次同时向下运动?