如图所示,质量的滑块(可视为质点),在F=60N的水平拉力作用下从A点由静止开始运动,一段时间后撤去拉力F,当滑块由平台边缘B点飞出后,恰能从水平地面上的C点沿切线方向落入竖直圆弧轨道CDE,并从轨道边缘E点竖直向上飞出,经过0.4 s后落回E点。已知AB间的距离L="2.3" m,滑块与平台间的动摩擦因数
,平台离地高度
,B、C两点间水平距离s="1.2" m,圆弧轨道半径R=1.0m。重力加速度g取10 m/s2,不计空气阻力。求:
(1)滑块运动到B点时的速度大小;
(2)滑块在平台上运动时受水平拉力F作用的时间;
(3)分析滑块能否再次经过C点。
有人设计了一种可测速的跑步机,测速原理如图所示,该机底面固定有间距为、长度为
的平行金属电极。电极间充满磁感应强度为
、方向垂直纸面向里的匀强磁场,且接有电压表和电阻
,绝缘橡胶带上镀有间距为
的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻,若橡胶带匀速运动时,电压表读数为
,求:
(1)橡胶带匀速运动的速率;
(2)一根金属条每次经过磁场区域克服安培力做的功。
如图所示,在粗糙水平台阶上放置一质量m=0.5kg的小物块,它与水平台阶间的动摩擦因数μ=0.5,与台阶边缘O点的距离s=5m。在台阶右侧固定一个1/4圆弧挡板,圆弧半径R=1m,圆弧的圆心也在O点。今以O点为原点建立平面直角坐标系xOy。现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板。(,取g=10m/s2)
(1)若小物块恰能击中挡板上的P点(OP与水平方向夹角为37°),求其离开O点时的速度大小;
(2)为使小物块击中挡板,求拉力F作用的最短时间。
如图(a)所示,一物体以一定的速度v0沿足够长斜面向上运动,此物体在斜面上的最大位移与斜面倾角的关系由图(b)中的曲线给出。设各种条件下,物体运动过程中的摩擦系数不变。g=10m/s2试求
(1)物体的初速度大小;
(2)物体与斜面之间的动摩擦因数;
(3)当θ为30°时最大位移。
某人在相距10m的A、B两点间练习折返跑,他由静止从A出发跑向B点,到达B点后立即返回A点。设加速过程和减速过程都是匀变速运动,加速过程和减速过程的加速度分别是4m/s2和8m/s2,运动过程中的最大速度为4m/s,从B点返回过程中达到最大速度后即保持该速度运动到A点,求:
(1)从B点返回A点过程中以最大速度运动的时间;
(2)从A运动到B点与从B运动到A两过程的平均速度大小之比。
如图所示,在足够长的绝缘板上方距离为d的P点有一个粒子发射源,能够在纸面内向各个方向发射速率相等,比荷q/m=k的带正电的粒子,不考虑粒子间的相互作用和粒子重力。
(1)若已知粒子的发射速率为vo,在绝缘板上方加一电场强度大小为E、方向竖直向下的匀强电场,求同一时刻发射出的带电粒子打到板上的最大时间差;
(2)若已知粒子的发射速率为vo,在绝缘板的上方只加一方向垂直纸面,磁感应强度B=的匀强磁场,求带电粒子能到达板上的长度。
(3)若粒子的发射速率vo未知,在绝缘板的上方只加一方向垂直纸面,磁感应强度适当的匀强磁场,使粒子做圆周运动的运动半径大小恰好为d,为使同时发射出的粒子打到板上的最大时间差与(1)中相等,求vo的大小。