已知☉M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切☉M于A,B两点.
(1)如果|AB|=,求直线MQ的方程.
(2)求证:直线AB恒过一个定点.
(本小题满分13分)
已知,函数
,
,
.
(I)求函数的单调递减区间;
(Ⅱ)若在区间上至少存在一个实数
,使
成立,试求正实数
的取值范围.
(本小题满分12分)
在中,角
所对的边分别为
.
设向量,
(I)若,求角
;
(Ⅱ)若,
,
,求边
的大小.
(本小题满分12分)
已知公差不为零的等差数列中,
,且
成等比数列.
(I)求数列的通项公式;
(II)设,求数列
的前
项和
.
(本小题满分12分)
已知,
,
,
函数,且函数
的最小正周期为
.
(I)求函数的解析式;
(Ⅱ)求函数在
上的单调区间.
(本小题满分13分)已知函数的图象在
上连续不断,定义:
,
.其中,
表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶
收缩函数”.
(1)已知函数,试写出
,
的表达式,并判断
是否为
上的“
阶收缩函数”,如果是,请求对应的
的值;如果不是,请说明理由;
(2)已知,函数
是
上的2阶收缩函数,求
的取值范围.