如图①,②,在平面直角坐标系中,点
的坐标为(4,0),以点
为圆心,4为半径的圆与
轴交于
,
两点,
为弦,
,
是
轴上的一动点,连结
。
(1)的度数为 ;
(2)如图①,当与⊙A相切时,求
的长;
(3)如图②,当点在直径
上时,
的延长线与⊙A相交于点
,问
为何值时,
是等腰三角形?
如图,在以O为圆心的两个同心圆的圆中,大圆的弦AB交小圆于C、D两点,试判断AC与BD的大小关系,并说明理由.
若方程x2-kx+4=0有两个相等的实数根,求出k的值并求出此时方程的根.
如图,AB是⊙O的直径,AC是弦,D是AC的中点,若OD=4,求BC.
解方程:
(1)x2-4x=0
(2)2x2+5x+1=0.
(3)x2-6x+9=(5-2x)2
(4)x2-x-4=0(用配方法)
(本题12分)已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程的解,点C的纵坐标恰好是方程
的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.
1)求直线BC的解析式;
2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?
3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.