在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复。下表是活动进行中的一组统计数据:
摸球的次数n |
100 |
150 |
200 |
500 |
800 |
1000 |
摸到白球的次数m |
58 |
96 |
116 |
295 |
484 |
601 |
摸到白球的频率![]() |
0.58 |
0.64 |
0.58 |
0.59 |
0.605 |
0.601 |
请估计:当n很大时,摸到白球的频率将会接近_________;
假如你去摸一次,你摸到白球的概率是________;摸到黑球的概率是_____;
试估计口袋中黑、白两种颜色的球各有多少个?
解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了。这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法。
请你依据下面的寻宝游戏规则,探究“寻宝游戏”的奥秘。
(1)用树状图或列表的方式表示出所有可能的寻宝情况
(2)求在寻宝游戏中胜出的概率。
如图,在△ABE与△ACD中,点D在AB上,点E在AC上,BE和CD相交于点O,若AB=AC, BD=CE,则∠ADC=∠AEB.请说明理由。
如图:在正方形网格中有一个△ABC,请按下列要求进行(只能借助于网格):
(1)、请作出△ABC中BC边上的高AE;
(2)、作出将△ABC向右平移6格,再向上平移3格后的△DEF;
(3)、作一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积。
如图,在△ABC中,点D为BC边上的点,BE平分∠ABC交AD于点E.若∠ABE=15°,∠BAD=40°,求∠ADC的度数。
如图,M是AB的中点,∠C=∠D,∠1=∠2,请说明 AC=BD的理由(填空)
解:M是AB的中点,
∴ AM = ( )
在中
∴△≌△()
∴AC=BD()