小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)
从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生的概率;
(2)抽取2名,恰好是1名男生和1名女生.
(本题满分8)已知关于x的方程.
(1)若此方程有两个不相等的实数根,求a的范围;
(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.
解方程
(1)
(2)
(本题10分)△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC、直线BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).
(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),
①试判别△DEF的形状,并说明理由;
②判断四边形ECFD的面积是否发生变化,并说明理由.
(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;
(本题8分) 已知:D为△ABC所在平面内一点,且DB=DC,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF.
(1)当点D在BC边上时(如图),判断△ABC的形状(直接写出答案);
(2)当点D在△ABC内部时,(1)中的结论是否一定成立?若成立,请证明;若不成立,请举出反例(画图说明).
(3)当点D在△ABC外部时,(1)中的结论是否一定成立?若成立,请证明;若不成立,请举出反例(画图说明).