电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”,并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张
,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少
,“铁杆足球迷”愿意前往观看的人数会减少
.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?
在等比数列中,
,公比
,前
项和
,求首项
和项数
.
旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售件。通过改进工艺,产品的成本不变,质量和技术含量提高,市场分析的结果表明,如果产品的销售价提高的百分率为
。那么月平均销售量减少的百分率为
。改进工艺后,旅游部门销售该纪念品的平均利润是y(元)。
(1)写出y与x的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大。
在中,角A、B、C所对的边分别为a,b,c,设S为
的面积,满足
(1)求角C的大小;
(2)求的最大值。
已知函数若函数
的图像有三个不同的交点,求实数a的取值范围。
设函数,且以
为最小正周期。
(1)求
(2)求的解析式;
(3)已知求
的值。