植树节前夕,某校所有学生参加植树活动,要求每人植2~6棵.活动结束后,校学生会就本校学生的植树量进行了调查.经过对调查数据的分析,得到如下图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:
(1)求该校共有多少名学生;
(2)将条形统计图补充完整;
(3)在扇形统计图中,计算出“3棵”部分所对应的圆心角的度数;
(4)在这次调查中,众数和中位数分别为多少?
(5)从该校中任选一名学生,其植树量为“6棵”的概率是多少?
如图,在边长为1个单位长度的小正方形组成的方格中,点A、B、C都是格点.
(1)将△ABC绕点O按逆时针方向旋转180°得到△A1B1C1,请画出△A1B1C1;
(2)依次连结BC1、B1C,猜想四边形BC1B1C是什么特殊四边形?并说明理由.
用配方法解一元二次方程:.
如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.
(1)说明:;
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为
时,求
的值.
某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件,价格每降低1元,平均每天多销售3件,价格每升高1元,平均每天少销售3件.
(1)写出平均每天销售量y(件)与每件销售价x(元)之间的函数关系式,并注明自变量的取值范围;
(2)求出该个体户每天销售这种酒的毛利润W(元)与每件酒的售价x(元)之间的函数关系式,并注明自变量的取值范围(每件的毛利润=售价-进价);
(3)当酒的售价为多少时平均每天的利润最大,最大利润是多少?
已知:如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H.
求证:OG=OH.