如图所示,半径R = 0.1m的竖直半圆形光滑轨道bc与水平面ab相切。质量m = 0.1kg的小滑块B放在半圆形轨道末端的b点,另一质量也为m= 0.1kg的小滑块A,以v0 = 2m/s的水平初速度向B滑行,滑过s = 1m的距离,与B相碰,碰撞时间极短,碰后A、B粘在一起运动。已知木块A与水平面之间的动摩擦因数μ = 0.2。取重力加速度g = 10m/s²。A、B均可视为质点。求:
(1)A与B碰撞前瞬间的速度大小vA;
(2)碰后瞬间,A、B共同的速度大小v;
(3)在半圆形轨道的最高点c,轨道对A、B的作用力N的大小。
把带电荷量2×10﹣8C的正点电荷从无限远处移到电场中A点,要克服电场力做功8×10-6J,若把该电荷从无限远处移到电场中B点,需克服电场力做功2×10-6J,取无限远处电势为零.求:
(1)A点的电势;
(2)A、B两点的电势差;
(3)若把2×10-5C的负电荷由A点移到B点电场力做的功.
(10分)如图所示,在水平光滑直导轨上,静止着三个质量均为m=1kg的相同小球A、B、C,现让A球以v0=2m/s的速度向着B球运动,A、B两球碰撞后粘在一起,两球继续向右运动并与C球碰撞,C球的最终速度vC=1m/s.问:
①A、B两球与C球相碰前的共同速度多大?
②两次碰撞过程中一共损失了多少动能?
图为沿x轴向右传播的简谐横波在t=1.2 s时的波形,位于坐标原点处的观察者测到在4 s内有10个完整的波经过该点。
求该 ① 波的波幅、频率、周期和波速。
②画出平衡位置在x轴上P点处的质点在0-0.6 s内的振动图象。
一定质量的理想气体被活塞封闭在可导热的气缸内,活塞相对于底部的高度为h,可沿气缸无摩擦地滑动。取一小盒沙子缓慢地倒在活塞的上表面上。沙子倒完时,活塞下降了h/4。再取相同质量的一小盒沙子缓慢地倒在活塞的上表面上。外界大气的压强和温度始终保持不变,求此次沙子倒完时活塞距气缸底部的高度。
(18分)如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为、带电量为e的电子,电子重力忽略不计。在三角形ABO内有垂直纸面向里的匀强磁场,当电子从顶点A沿AB方向射入磁场时,电子恰好从O点射出。试求:
(1)从顶点A沿AB方向射入的电子在磁场中的运动时间t;
(2)速度大小为的电子从顶点A沿AB方向射入磁场(其它条件不变),求从磁场射出的位置坐标。
(3)磁场大小、方向保持不变,改变匀强磁场分布区域,使磁场存在于三角形ABO内的左侧,要使放射出的速度大小为电子穿过磁场后都垂直穿过y轴后向右运动,试求匀强磁场区域分布的最小面积S。(用阴影表示最小面积)