“重力探矿”是常用的探测石油矿藏的方法之一。其原理可简述如下:如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为;石油密度远小于
,可将上述球形区域视为空腔。如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏差。重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。已知引力常数为G。
(1)“重力探矿”利用了“割补法”原理:如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,剩余的阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?
(2)设球形空腔体积为V,球心深度为d(远小于地球半径),=x,利用“割补法”原理:如果将近地表的球形空腔填满密度为
的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常值可通过填充后的球形区域对Q处物体m产生的附加引力
来计算,式中M是填充岩石后球形区域的质量,求空腔所引起的Q点处的重力加速度反常值
(
在OP方向上的分量)
(3)若在水平地面上半径L的范围内发现:重力加速度反常值在与
(k>1)(
为常数)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。
如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30o的方向射入磁场,粒子重力不计.
求:
(1)带电粒子能从AB边界飞出的最大速度?
(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且不碰到负极板,则极板间电压及整个过程中粒子在磁场中运动的时间?
(3)若带电粒子的速度是(2)中的倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的范围?
质量为mB=2kg的平板车B上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一块质量为mA=2kg的物体A,一颗质量为m0=0.01kg的子弹以v0=600m/s的水平初速度瞬间射穿A后,速度变为v=100m/s,已知A 、B之间的动摩擦因数不为零,且A与B最终达到相对静止。
求:
①物体A的最大速度vA;
②平板车B的最大速度vB。
③整个过程中产生的内能是多少?
一长=0.80m的轻绳一端固定在点,另一端连接一质量
=0.10kg的小球,悬点
距离水平地面的高度H = 1.00m。开始时小球处于
点,此时轻绳拉直处于水平方向上,如图所示。让小球从静止释放,当小球运动到
点时,轻绳碰到悬点
正下方一个固定的钉子P时立刻断裂。不计轻绳断裂的能量损失,取重力加速度g=10m/s2。
求:
(1)当小球运动到点时的速度大小;
(2)绳断裂后球从点抛出并落在水平地面的C点,求C点与
点之间的水平距离;
(3)若OP=0.6m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力。
如图所示的直角坐标系中,在直线x=-2l0到y轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x轴上方的电场方向沿y轴负方向,x轴下方的电场方向沿y轴正方向。在电场左边界上A(-2l0,-l0)到C(-2l0,0)区域内,连续分布着电量为+q、质量为m的粒子。从某时刻起由A点到C点间的粒子,依次连续以相同的速度v0沿x轴正方向射入电场。若从A点射入的粒子,恰好从y轴上的A′(0,l0)沿x轴正方向射出电场,其轨迹如图。不计粒子的重力及它们间的相互作用。
⑴求匀强电场的电场强度E;
⑵求在AC间还有哪些位置的粒子,通过电场后也能沿x轴正方向运动?
⑶若以直线x=2l0上的某点为圆心的圆形区域内,分布着垂直于xOy平面向里的匀强磁场,使沿x轴正方向射出电场的粒子,经磁场偏转后,都能通过直线x=2l0与圆形磁场边界的一个交点处,而便于被收集,则磁场区域的最小半径是多大?相应的磁感应强度B是多大?
如图所示,一长为l的长方形木块在水平面上以加速度a做匀加速直线运动。先后经过l、2两点,l、2之间有一定的距离,木块通过l、2两点所用时间分别为t1和t2。
求:(1)木块经过位置1、位置2的平均速度大小;
(2)木块前端P在l、2之间运动所需时间。