一半径R=0.6m的金属圆筒有一圈细窄缝,形状如图所示。圆筒右侧与一个垂直纸面向里的有界匀强磁场相切于P,圆筒接地,圆心O处接正极,正极与圆筒之间的电场类似于正点电荷的电场,正极与圆筒之间电势差U可调。正极附近放有一粒子源(粒子源与正极O间距离忽略不计)能沿纸面向四周释放比荷q/m=1.5×l05C/kg的带正电粒子(粒子的初速度、重力均不计)。带电粒子经电场加速后从缝中射出进入磁场,已知磁场宽度d=0.4m,磁感应强度B=0.25T。
(1)若U=750V,求:①粒子达到细缝处的速度;②若有一粒子在磁场中运动的时间最短,求此粒子飞出磁场时与右边界的夹角大小。
(2)只要电势差U在合适的范围内变化,总有从向沿某一方向射出粒子经过磁场后又回到O处,求电势差U合适的范围。
传送带被广泛应用于各行各业。由于不同的物体与传送带之间的动摩擦因数不同,物体在传送带上的运动情况也有所不同。如图所示,一倾斜放置的传送带与水平面的倾角θ=370, 在电动机的带动下以v=2m/s的速率顺时针方向匀速运行。M、N为传送带的两个端点,MN两点间的距离L=7m。N端有一离传送带很近的挡板P可将传送 带上的物块挡住。在传送带上的O处先后由静止释放金属块A和木块B,金属块与木块质量均为1kg,且均可视为质点,OM间距离L=3m。 sin37°=0.6,cos37°=0.8,g取10m/s2。传送带与轮子间无相对滑动,不计轮轴处的摩擦。
(1)金属块A由静止释放后沿传送带向上运动,经过2s到达M端,求金属块与传送带间的动摩擦因数μ1。
(2)木块B由静止释放后沿传送带向下运动,并与挡板P发生碰撞。已知碰撞时间极短,木块B与挡板P碰撞前后速度大小不变,木块B与传送带间的动摩擦因数μ2=0.5。求:
a.与挡板P第一次碰撞后,木块B所达到的最高位置与挡板P的距离;
b.经过足够长时间,电动机的输出功率恒定,求此时电动机的输出功率。
如图所示,两根相距为d的足够长的、光滑的平行金属导轨位于水平的xoy平面内,左端接有阻值为R的电阻,其他部分的电阻均可忽略不计。在x>0的一侧存在方向竖直向下的磁场,磁感应强度大小按B=kx变化(式中k>0,且为常数)。质量为m的金属杆与金属导轨垂直架在导轨上,两者接触良好。在x<0的某位置,金属杆受到一瞬时冲量,获得速度大小为v0,方向沿x轴正方向。求:
(1)在金属杆运动过程中,电阻R上产生的总热量;
(2)若从金属杆进入磁场的时刻开始计时,始终有一个方向向左的变力F作用于金属杆上,使金属杆的加速度大小恒为a,方向一直沿x轴负方向。求:
a.闭合回路中感应电流持续的时间;
b.金属杆在磁场中运动过程中,外力F与时间t关系的表达式?
如图所示,在y轴的右侧存在磁感应强度为B的方向垂直纸面向外的匀强磁场,在x轴的上方有一平行板式加速电场。有一薄绝缘板放置在y轴处,且与纸面垂直。现有一质量为m、电荷量为q的粒子由静止经过加速电压为U的电场加速,然后以垂直于板的方向沿直线从A处穿过绝缘板,而后从x轴上的D处以与x轴负向夹角为30°的方向进入第四象限,若在此时再施加一个电场可以使粒子沿直线到达y轴上的C点(C点在图上未标出)。已知OD长为l,不计粒子的重力.求:
(1)粒子射入绝缘板之前的速度
(2)粒子经过绝缘板时损失了多少动能
(3)所加电场的电场强度和带电粒子在y轴的右侧运行的总时间.
如图,在竖直面内有两平行金属导轨AB、CD。导轨间距为L,电阻不计。一根电阻不计的金属棒ab可在导轨上无摩擦地滑动。棒与导轨垂直,并接触良好。导轨之间有水平向外的匀强磁场,磁感强度为B。导轨右边与电路连接。电路中的三个定值电阻阻值分别为2R、R和R。在BD间接有一水平放置的平行板电容器C,板间距离为d。当ab棒以速度v0一直向左匀速运动时,在电容器正中心的质量为m的带电微粒恰好处于静止状态。
(1)试判断微粒的带电性质及所带电量的大小。
(2)若ab棒突然以2v0的速度一直向左匀速运动,则带电微粒经多长时间运动到电容器的上板?
其电势能和动能各增加了多少?
在竖直平面内有一个粗糙的圆弧轨道,其半径R=0.4m,轨道的最低点距地面高度h=0.45m.一质量m=0.1kg的小滑块从轨道的最高点A由静止释放,到达最低点B时以一定的水平速度离开轨道,落地点C距轨道最低点的水平距离x=0.6m.空气阻力不计,g取10m/s2,求:
(1)小滑块离开轨道时的速度大小;
(2)小滑块运动到轨道最低点时,对轨道的压力大小;
(3)小滑块在轨道上运动的过程中,克服摩擦力所做的功.