如图所示,在边长为的正方形
中,点
在线段
上,且
,
,作
//
,分别交
,
于点
,
,作
//
,分别交
,
于点
,
,将该正方形沿
,
折叠,使得
与
重合,构成如图所示的三棱柱
.
(1)求证:平面
;
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.
求倾斜角是45°,并且与原点的距离是5的直线的方程.
(14分)已知函数.
(Ⅰ)求函数的最小值;
(Ⅱ)求证:;
(Ⅲ)对于函数与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设函数
,
,
与
是否存在“分界线”?若存在,求出
的值;若不存在,请说明理由.
设函数对任意
,都有
,当
时,
(1)求证:是奇函数;
(2)试问:在时
,
是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式
(1)求
(2).
已知函数的图象在与
轴交点处的切线方程是
.
(I)求函数的解析式;
(II)设函数,若
的极值存在,求实数
的取值范围以及函数
取得极值时对应的自变量
的值.