已知抛物线的焦点
到准线的距离为
.过点
作直线交抛物线
与
两点(
在第一象限内).
(1)若与焦点
重合,且
.求直线
的方程;
(2)设关于
轴的对称点为
.直线
交
轴于
. 且
.求点
到直线
的距离的取值范围.
已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值.
在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,
),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.
设椭圆的左焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为
(1)求椭圆方程;
(2)过点的直线
与椭圆交于不同的两点
,当
面积最大时,求
已知抛物线,
为坐标原点,动直线
与
抛物线交于不同两点
(1)求证:·
为常数;
(2)求满足的点
的轨迹方程。
若不等式对一切
恒成立,试确定实数
的取值范围.