若,证明:
(本题12分) 已知函数。
若函数在
上是增函数,求正实数
的取值范围;
(1)当时,求函数
在
上的最大值和最小值;
(2)当时,证明:对任意的正整数
,不等式
都成立。
(本题 12分).过点A(-4,0)向椭圆引两条切线,切点分别为B,C,且
为正三角形.
(Ⅰ)求最大时椭圆的方程;
(Ⅱ)对(Ⅰ)中的椭圆,若其左焦点为,过
的直线
与
轴交于点
,与椭圆的一个交点为
,且
求直线
的方程
(本题 12分)已知数列,
满足
,数列
的前
项和为
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:;
(本题12分)如图,斜三棱柱的底面是直角三角形,
,点
在底面
上的射影恰好是
的中点,且
.
(Ⅰ)求证:平面平面
;
(Ⅱ)求证:;
(Ⅲ)求二面角的大小.
(本题12分) 某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.
(Ⅰ)求某选手第二次抽到的不是科技类题目的概率;
(Ⅱ)求某选手抽到体育类题目数的分布列和数学期望E
.