游客
题文

已知椭圆的短轴长为,且斜率为的直线过椭圆的焦点及点
(1)求椭圆的方程;
(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.
(ⅰ)若满足为坐标原点),求的面积;
(ⅱ)若直线与两坐标轴都不垂直,点轴上,且使的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知直线经过两点A(2,1),B(6,3)
(1)求直线的方程
(2)圆C的圆心在直线上,并且与轴相切于点(2,0),求圆C的方程
(3)若过B点向(2)中圆C引切线BS、BT,S、T分别是切点,求ST直线的方程.

如图所示,在直三棱柱中,,∠ACB=90°,M是的中点,N是的中点

(Ⅰ)求证:MN∥平面
(Ⅱ)求点到平面BMC的距离;

如图,为正方体,下面结论错误的是

A.平面
B.
C.平面ACC1A1⊥平面
D.异面直线所成的角为60°

(本小题14分)如图,已知某椭圆的焦点是,过点并垂直于x轴的直线与椭圆的一个交点为B,且,椭圆上不同的两点满足条件:成等差数列.

(Ⅰ)求该椭圆的方程;
(Ⅱ)求弦中点的横坐标;
(Ⅲ)设弦的垂直平分线的方程为,求m的取值范围.

(本小题13分)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉价格为1800元,面粉的保管费为平均每天每6吨18元(从面粉进厂起开始收保管费,不足6 吨按6 吨算),购面粉每次需要支付运费900元,设该厂每天购买一次面粉。(注:该厂每次购买的面粉都能保证使用整数天)
(Ⅰ)计算每次所购买的面粉需支付的保管费是多少?
(Ⅱ)试求值,使平均每天所支付总费用最少?并计算每天最少费用是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号