如图所示,平面直角坐标系xoy中,在第二象限内有竖直放置的两平行金属板,其中右板开有小孔;在第一象限内存在内、外半径分别为
、R的半圆形区域,其圆心与小孔的连线与x轴平行,该区域内有磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里:在y<0区域内有电场强度为E的匀强电场,方向与x轴负方向的夹角为60°。一个质量为m,带电量为-q的粒子(不计重力),从左金属板由静止开始经过加速后,进入第一象限的匀强磁场。求:
(1)若两金属板间的电压为U,粒子离开金属板进入磁场时的速度是多少?
(2)若粒子在磁场中运动时,刚好不能进入的中心区域,此情形下粒子在磁场中运动的速度大小。
(3)在(2)情形下,粒子运动到y<0的区域,它第一次在匀强电场中运动的时间。
物体在地球表面重16 N,它在以5 m/s2的加速度加速上升的火箭中的视重为9 N,则此火箭离地球表面的距离为地球半径的多少倍?(设地球表面处g0取10 m/s2)
如图所示,质量为m的足够长的“[”金属导轨abcd放在倾角为θ的光滑绝缘斜面上,bc段电阻为R,其余段电阻不计。另一电阻为R、质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PbcQ构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于斜面的光滑立柱。导轨bc段长为L,以ef为界,其左侧匀强磁场垂直斜面向上,右侧匀强磁场方向沿斜面向上,磁感应强度大小均为B。在t=0时,一沿斜面方向的作用力F垂直作用在导轨的bc边上,使导轨由静止开始沿斜面向下做匀加速直线运动,加速度为a。
(1)请通过计算证明开始一段时间内PQ中的电流随时间均匀增大。
(2)求在电流随时间均匀增大的时间内棒PQ横截面内通过的电量q和导轨机械能的变化量△E。
(3)请在F-t图上定性地画出电流随时间均匀增大的过程中作用力F随时间t变化的可能关系图,并写出相应的条件。(以沿斜面向下为正方向)
物体A的质量为mA,圆环B的质量为mB,通过绳子连结在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,如图所示,长度l=4m,现从静止释放圆环。不计定滑轮和空气的阻力,取g=10m/s2。求:
(1)若mA:mB=5:2,则圆环能下降的最大距离hm。
(2)若圆环下降h2=3m时的速度大小为4m/s,则两个物体的质量应满足怎样的关系?
(3)若mA=mB,请定性说明小环下降过程中速度大小变化的情况及其理由。
如图所示,半径R=0.6m的光滑圆弧轨道BCD与足够长的粗糙轨道DE在D处平滑连接,O为圆弧轨道BCD的圆心,C点为圆弧轨道的最低点,半径OB、OD与OC的夹角分别为53°和37°。将一个质量m=0.5kg的物体(视为质点)从B点左侧高为h=0.8m处的A点水平抛出,恰从B点沿切线方向进入圆弧轨道。已知物体与轨道DE间的动摩擦因数
=0.8,重力加速度g取10m/s2,sin37°="0." 6,cos37°=0.8。求:
(1)物体水平抛出时的初速度大小v0;
(2)物体在轨道DE上运动的路程s。
如图所示,竖直放置的圆柱形气缸内有一质量为m的活塞,可在气缸内作无摩擦滑动,活塞下方封闭一定质量的气体。已知活塞截面积为S,大气压强为p0,气缸内气体的热力学温度为T0,重力加速度为g。求:
(1)若保持温度不变,在活塞上放一重物,使气缸内气体的体积减小1/3,这时气体的压强和所加重物的质量M。
(2)在加压重物的情况下,要使气缸内的气体恢复到原来体积,应对气体加热,使气体温度升高到多少摄氏度?