如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合。转台以一定角速度ω匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°.重力加速度大小为g。若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;
“神舟”六号载人飞船在空中环绕地球做匀速圆周运动,某次经过赤道的正上空时,对应的经度为θ1(实际为西经157.5°),飞船绕地球转一圈后,又经过赤道的正上空,此时对应的经度为θ2(实际为180°).已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T0.求飞船运行的圆周轨道离地面高度h的表达式.(用θ1、θ2、T0、g和R表示)
如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常数为G.
(1)求两星球做圆周运动的周期.
(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期为T2.已知地球和月球的质量分别为5.98×1024 kg和7.35×1022 kg.求T2与T1两者平方之比.(结果保留三位小数)
登月舱在离月球表面112 km的高空绕月球运行,运行周期为120.5 min,已知月球半径为1.7×103 km,试估算月球的质量.
如图所示,圆弧轨道与水平面平滑连接,轨道与水平面均光滑,质量为m的物块B与轻质弹簧拴接静止在水平面上,弹簧右端固定,质量为3m的物块A从圆弧轨道上距离水平面高h处由静止释放,与B碰撞后推着B一起运动但与B不粘连。求:
I.弹簧的最大弹性势能;
II.A与B第一次分离后,物块A沿圆弧面上升的最大高度。
如图所示,ABC为一透明材料 做成的柱形光学元件的横截面,该种材料折射率n=2,AC为一半径为R的圆弧,D为圆弧面圆心,ABCD构成正方形,在D处有一点光源。若只考虑首次从圆弧AC直接射向AB、BC的光线,从点光源射入圆弧AC的光中,有一部分不能从AB、BC面直接射出,求这部分光照射圆弧AC的弧长。