阅读下面材料:
小明遇到这样一个问题: 如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.
小明研究发现:如图2,拼接的大正方形的边长为, “日”字形的对角线长都为
,五个正方形被两条互相垂直的线段AB,CD分割为四部分,将这四部分图形分别标号,以CD为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.
请你参考小明的画法,完成下列问题:
(1)如图3,边长分别为a,b的两个正方形被两条互相垂直的线段AB,CD分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图
(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为,则八角形纸板的边长为 .
某市政府计划修建一处公共服务设施,使它到三所公寓A、B、C 的距离相等。若三所公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置(尺规作图,保留作图痕迹,不写作法);
若∠BAC=56º,则∠BPC= º.
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;
在DE上画出点P,使
最小
在DE上画出点Q,使
最小
半径为5的⊙O中,直径AB的不同侧有定点C和动点P. 已知BC∶CA=4∶3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q. 求证:△ABC∽△PQC;
当点P与点C关于AB对称时,求CQ的长;
当点P运动到什么位置时,CQ取到最大值?求此时CQ的长;
当点P运动到弧AB的中点时,求CQ的长.
直线y=-x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点匀速出发,同时到达A点时运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.直接写出A、B两点的坐标;
设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;
当s= 时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的
第四个顶点M的坐标.