游客
题文

包含甲在内的甲、乙、丙个人练习传球,设传球次,每人每次只能传一下,首先从甲手中传出,第次仍传给甲,共有多少种不同的方法?
为了解决上述问题,设传球次,第次仍传给甲的传球方法种数为;设传球次,第次不传给甲的传球方法种数为.根据以上假设回答下列问题:
(1)求出的值;
(2)根据你的理解写出的关系式;
(3)求的值及通项公式.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分10分)
甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.
(1)求的分布列及数学期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.

(本小题满分10分)
已知动圆过点且与直线相切.

(1)求点的轨迹的方程;
(2)过点作一条直线交轨迹两点,轨迹两点处的切线相交于点为线段的中点,求证:轴.

D.选修4—5:不等式选讲
(本小题满分10分)
求函数的最大值.

C.选修4—4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),判断直线和圆的位置关系.

B.选修4—2:矩阵与变换
(本小题满分10分)[
已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号