包含甲在内的甲、乙、丙个人练习传球,设传球
次,每人每次只能传一下,首先从甲手中传出,第
次仍传给甲,共有多少种不同的方法?
为了解决上述问题,设传球次,第
次仍传给甲的传球方法种数为
;设传球
次,第
次不传给甲的传球方法种数为
.根据以上假设回答下列问题:
(1)求出的值;
(2)根据你的理解写出与
的关系式;
(3)求的值及通项公式
.
(本小题满分10分)
甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为
.
(1)求的分布列及
数学期望;
(2)在概率(
=0,1,2,3)中, 若
的值最大, 求实数
的取值范围.
(本小题满分10分)
已知动圆过点
且与直线
相切.
(1)求点的轨迹
的方程;
(2)过点作一条直线交轨迹
于
两点,轨迹
在
两点处的切线相交于点
,
为线段
的中点,求证:
轴.
D.选修4—5:不等式选讲
(本小题满分10分)
求函数的最大值.
C.选修4—4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,圆的方程为
,以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数),判断直线
和圆
的位置关系.
B.选修4—2:矩阵与变换
(本小题满分10分)[
已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.