游客
题文

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

科目 数学   题型 解答题   难度 较难
知识点: 不定方程和方程组
登录免费查看答案和解析
相关试题

设实数满足,求证:

已知曲线的极坐标方程为,曲线的极坐标方程为.试求曲线的直角坐标方程,并判断两曲线的位置关系.

已知矩阵,求矩阵

已知:如图,点上,平分,交于点.求证:为等腰直角三角形.

对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号