某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交于,从而得到五边形的市民健身广场,设.(1)将五边形的面积表示为的函数;(2)当为何值时,市民健身广场的面积最大?并求出最大面积.
设实数满足,求证:.
已知曲线的极坐标方程为,曲线的极坐标方程为.试求曲线和的直角坐标方程,并判断两曲线的位置关系.
已知矩阵,,求矩阵
已知:如图,点在上,,平分,交于点.求证:为等腰直角三角形.
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”. (Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由; (Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围; (Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号