某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中
,
,且
中,
,经测量得到
.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点
作一直线交
于
,从而得到五边形
的市民健身广场,设
.
(1)将五边形的面积
表示为
的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.
甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
乙校:
(1)计算,
的值;
(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;
(3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.
甲校 |
乙校 |
总计 |
|
优秀 |
|||
非优秀 |
|||
总计 |
参考数据与公式:
由列联表中数据计算
临界值表
![]() |
0.10 |
0.05 |
0.010 |
已知函数.
(1)求函数的最小正周期和值域;
(2)若为第二象限角,且
,求
的值.
顶点在坐标原点,开口向上的抛物线经过点,过点
作抛物线的切线交x轴于点B1,过点B1作x轴的垂线交抛物线于点A1,过点A1作抛物线的切线交x轴于点B2,…,过点
作抛物线的切线交x轴于点
.
(1)求数列{ xn },{ yn}的通项公式;
(2)设,数列{ an}的前n项和为Tn.求证:
;
(3)设,若对于任意正整数n,不等式
…
≥
成立,求正数a的取值范围.
如图,过点作抛物线
的切线
,切点A在第二象限.
(1)求切点A的纵坐标;
(2)若离心率为的椭圆
恰好经过切点A,设切线
交椭圆的另一点为B,记切线
,OA,OB的斜率分别为
,求椭圆方程.
已知函数 ,
.
(1)当 时,求函数
的最小值;
(2)当 时,讨论函数
的单调性;
(3)是否存在实数,对任意的
,且
,有
,恒成立,若存在求出
的取值范围,若不存在,说明理由。