如图所示,长
=0.2 m的细线上端固定在O点,下端连接一个质量为m=0.5kg的小球,悬点O距地面的高度H=0.35m,开始时将小球提到O点而静止,然后让它自由下落,当小球到达使细线被拉直的位置时,刚好把细线拉断,落到地面时的速度v=2m/s,如果不考虑细线的形变,g=10 m/s2,试求:
(1)细线拉断前后的速度大小和方向;
(2)假设细线由拉直到断裂所经历的时间为
,细线的平均张力大小;
(3)若小球触地前后速度大小相同、方向相反,求触地过程小球受到的合力冲量。
.如图所示,水平地面上方分布着水平向右的匀强电场.一“L”形的绝缘硬质管竖直固定在匀强电场中.管的水平部分长为l1=0.2m,离水平地面的距离为h=5.0m,竖直部分长为l2=0.1m.一带正电的小球从管的上端口A由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球在电场中受到的静电力大小为重力的一半,求:
(1)小球运动到管口B时的速度大小;
(2)小球着地点与管的下端口B的水平距离.(g=10m/s2).
如图所示,在空间有一坐标系xOy,其第一象限内充满着两个匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的边界.区域Ⅰ中的磁感应强度为B,方向垂直于纸面向外;区域Ⅱ中的磁感应强度为2B,方向垂直于纸面向内,边界上的P点坐标为(4L,3L).一质量为m、电荷量为q的带正电粒子从P点平行于y轴负方向射入区域Ⅰ,经过一段时间后,粒子恰好经过原点O.忽略粒子重力,已知sin37°=0.6,cos37°=0.8,求:
(1)粒子从P点运动到O点的时间至少为多少?
(2)粒子的速度大小可能是多少?
如图所示,在空间中固定放置一绝缘材料制成的边长为L的刚性等边三角形框架△DEF,DE边上S点处有一发射带正电的粒子源,发射粒子的方向皆在图中截面内且垂直于DE边向下.发射的电荷量皆为q,质量皆为m,但速度v有各种不同的值.整个空间充满磁感应强度大小为B,方向垂直截面向里的均匀磁场.设粒子与△DEF边框碰撞时没有能量损失和电荷量传递.求:
(1)带电粒子速度的大小为v时,做匀速圆周运动的半径;
(2)带电粒子速度v的大小满足什么条件时,可使S点发出的粒子最终又垂直于DE边回到S点?
(3)这些粒子中,回到S点所用的最短时间是多少?
如图所示,质量为0.05kg,长l=0.1m的铜棒,用长度也为l的两根轻软导线水平悬挂在竖直向上的匀强磁场中,磁感应强度为B=0.5T.不通电时,轻线在竖直方向,通入恒定电流后,棒向外偏转的最大角度θ=37°,求此棒中恒定电流多大?(不考虑棒摆动过程中产生的感应电流,g取10N/kg)
同学甲的解法如下:对铜棒受力分析如图所示:
当最大偏转角θ=37°时,棒受力平衡,有:
FTcosθ=mg,FTsinθ=F安=BIl
得I==A=7.5A
同学乙的解法如下:
F安做功:WF=Fx1=BIlsin37°×lsin37°=BI(lsin37°)2
重力做功:
WG=-mgx2=-mgl(1-cos37°)
由动能定理得:WF+WG=0
代入数据解得:I=A≈5.56A
请你对甲、乙两同学的解法作出评价:若你对两者都不支持,则给出你认为正确的解答.
如图所示,在倾角为37°的光滑斜面上有一根长为0.4m,质量为6×10-2kg的通电直导线,电流强度I=1A,方向垂直于纸面向外,导线用平行斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4T,方向竖直向上的磁场中.设t=0时,B=0,则需要多长时间,斜面对导线的支持力为零?(g取10m/s2)