如图,在平面直角坐标系中,直线=
分别与
轴,
轴相交于
两点,点
是
轴的负半轴上的一个动点,以
为圆心,3为半径作
.
(1)连结,若
,试判断
与
轴的位置关系,并说明理由;
(2)当为何值时,以
与直线
=
的两个交点和圆心
为顶点的三角形是正三角形?
某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按 、 、 、 四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数, 级:90分 分; 级:75分 分; 级:60分 分; 级:60分以下)
请解答下列问题:
(1)该企业员工中参加本次安全生产知识测试共有 人;
(2)补全条形统计图;
(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到 级的人数.
已知:如图,在 中,点 、 分别是边 、 的中点.求证: .
已知平面图形 ,点 、 是 上任意两点,我们把线段 的长度的最大值称为平面图形 的“宽距”.例如,正方形的宽距等于它的对角线的长度.
(1)写出下列图形的宽距:
①半径为1的圆: ;
②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;
(2)如图2,在平面直角坐标系中,已知点 、 , 是坐标平面内的点,连接 、 、 所形成的图形为 ,记 的宽距为 .
①若 ,用直尺和圆规画出点 所在的区域并求它的面积(所在区域用阴影表示);
②若点 在 上运动, 的半径为1,圆心 在过点 且与 轴垂直的直线上.对于 上任意点 ,都有 ,直接写出圆心 的横坐标 的取值范围.
如图,二次函数 的图象与 轴交于点 、 ,与 轴交于点 ,点 的坐标为 ,点 为 的中点,点 在抛物线上.
(1) ;
(2)若点 在第一象限,过点 作 轴,垂足为 , 与 、 分别交于点 、 .是否存在这样的点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由;
(3)若点 的横坐标小于3,过点 作 ,垂足为 ,直线 与 轴交于点 ,且 ,求点 的坐标.
(阅读)
数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
(理解)
(1)如图1,两个直角边长分别为 、 、斜边长为 的直角三角形和一个两条直角边都是 的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;
(2)如图2, 行 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式: ;
(运用)
(3) 边形有 个顶点,在它的内部再画 个点,以 个点为顶点,把 边形剪成若干个三角形,设最多可以剪得 个这样的三角形.当 , 时,如图3,最多可以剪得7个这样的三角形,所以 .
①当 , 时,如图4, ;当 , 时, ;
②对于一般的情形,在 边形内画 个点,通过归纳猜想,可得 (用含 、 的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.