如图,这是反映爷爷每天晚饭后从家中出发去元宝山公园锻炼的时间与距离之间关系的一幅图.
(1)右图反映的自变量、因变量分别是什么?
(2)爷爷每天从公园返回用多长时间?
(3)爷爷散步时最远离家多少米?
(4)爷爷在公园锻炼多长时间?
(5)计算爷爷离家后的2 0分钟内的平均速度.
如图15,已知∠1=∠2,∠3=∠4,EC=AD求证:⊿ABD≌⊿EBC.
你可以从中得出哪些结论?请写出两个
已知:如图,M是线段BC的中点,BC=4,分别以MB、MC为边在线段BC的同侧作等边△BAM、等边△MCD,连接AD求证:四边形ABCD是等腰梯形
将△MDC绕点M逆时针方向旋转α(60º<α<120º),得到△MD´C´,MD´交AB于点E,MC´交AD于点F,连接EF.
①求证:EF∥D´C´;
②△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.若△ABD的面积为4,求点B的坐标
求证:DC∥AB
四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:
土特产种类 |
甲 |
乙 |
丙 |
每辆汽车运载量(吨) |
8 |
6 |
5 |
每吨土特产获利(百元) |
12 |
16 |
10 |
设装运甲种土特产的车辆数为
,装运乙种土特产的车辆数为
,求
与
之间的函数关系式
如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值
如图,BD为⊙O的直径,AB=AC,AD交BC于点E.①求证:△ABE∽△ADB;②若AE=2,ED=4,求⊙O的面积
延长DB到F,使得,连接FA,若AC∥FD,试判断直线FA与⊙O的位置关系,并说明理由.