如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg、总电阻R=0.25W的单匝矩形金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数,重力加速度g取10 m/s2.求:
(1)线框受到的拉力F的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)线框在斜面上运动的过程中产生的焦耳热Q.
如图,光滑水平直轨道上有三个质量均为m的物块A、B、C. B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,
(1)整个系统损失的机械能;
(2)A与挡板分离时,A的速度(计算结果可用根号表示).
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:
(1)点电荷a从射出到经过G点所用的时间;
(2)点电荷b的速度大小.
短跑运动员完成100米赛跑的过程可简化为匀加速直线运动和匀速直线运动两个阶段.在一次比赛中,某运动员用11.00秒跑完全程.已知该运动员在匀加速直线运动阶段的第2秒内通过的距离为7.5米.试求:
(1)运动员在匀加速直线运动阶段的加速度;
(2)运动员在匀加速直线运动阶段通过的距离.
如图所示,在半径为R=的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度B,圆形区域右侧有一竖直感光板,从圆弧顶点P以速率v0的带正电粒子平行于纸面进入磁场,已知粒子的质量为m,电量为q,粒子重力不计.
(1)若粒子对准圆心射入,求它在磁场中运动的时间;
(2)若粒子对准圆心射入,且速率为v0,求它打到感光板上时速度的垂直分量;
(3)若粒子以速度v0从P点以任意角入射,试证明它离开磁场后均垂直打在感光板上.
如图,在竖直平面内,AB为水平放置的绝缘粗糙轨道,CD为竖直放置的足够长绝缘粗糙轨道,AB与CD通过四分之一绝缘光滑圆弧形轨道平滑连接,圆弧的圆心为O,半径R=0.50m,轨道所在空间存在水平向右的匀强电场,场强的大小E=1.0×104 N/C,现有质量m=0.20kg,电荷量q=8.0×10﹣4 C的带电体(可视为质点),从A点由静止开始运动,已知sAB=1.0m,带电体与轨道AB、CD间的动摩擦因数均为0.5.假定带电体与轨道之间的最大静摩擦力和滑动摩擦力相等.求:(g=10m/s2)
(1)带电体运动到圆弧形轨道C点时的速度;
(2)带电体最终停在何处.