在平面直角坐标系xOy中,点P是圆上一动点,
x轴于点D.记满足
的动点M的轨迹为Γ.
(1)求轨迹Γ的方程;
(2)已知直线与轨迹Γ交于不同两点A,B,点G是线段AB中点,射线OG交轨迹Γ于点Q,且
.
①证明:
②求△AOB的面积S(λ)的解析式,并计算S(λ)的最大值.
四棱锥,底面
为平行四边形,侧面
底面
.已知
,
,
,
为线段
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求面与面
所成二面角大小.
某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):
围棋社 |
舞蹈社 |
拳击社 |
|
男生 |
5 |
10 |
28 |
女生 |
15 |
30 |
m |
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人.
(Ⅰ)求拳击社团被抽出的6人中有5人是男生的概率;
(Ⅱ)设拳击社团有X名女生被抽出,求X的分布列及数学期望.
已知函数,记函数
的最小正周期为
,向量
,
(
),且
.
(Ⅰ)求在区间
上的最值;
(Ⅱ)求的值.
已知数列,满足
,
,
(1)求的值;
(2)猜想数列的通项公式
,并用数学归纳法证明;
(3)己知,设
,记
,求
.
已知函数(其中
是实数常数,
)
(1)若,函数
的图像关于点(—1,3)成中心对称,求
的值;
(2)若函数满足条件(1),且对任意
,总有
,求
的取值范围;
(3)若b=0,函数是奇函数,
,
,且对任意
时,不等式
恒成立,求负实数
的取值范围.