在平面直角坐标系中,点P到两点(0,-
)、(0,
)的距离之和等于4.设点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与C交于A、B两点.k为何值时此时|
|的值是多少?
(本小题满分12分)已知函数,
.
(1)若恒成立,求实数
的值;
(2)若方程有一根为
,方程
的根为
,是否存在实数
,使
?若存在,求出所有满足条件的
值;若不存在,说明理由.
(本小题满分12分)已知的两顶点坐标
,
,圆
是
的内切圆,在边
,
,
上的切点分别为
,
(从圆外一点到圆的两条切线段长相等),动点
的轨迹为曲线
.
(1)求曲线的方程;
(2)设直线与曲线
的另一交点为
,当点
在以线段
为直径的圆上时,求直线
的方程.
(本小题满分12分)在三棱柱中,侧面
为矩形,
,
,
为
的中点,
与
交于点
,
侧面
.
(1)证明:;
(2)若,求直线
与平面
所成角的正弦值.
(本小题满分12分)为迎接2014年“马”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题有三个选项,问题
有四个选项,但都只有一个选项是正确的,正确回答问题
可获奖金
元,正确回答问题
可获奖金
元,活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止,假设一个参与者在回答问题前,对这两个问题都很陌生.
(1)如果参与者先回答问题,求其恰好获得奖金
元的概率;
(2)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.
(本小题满分12分)如图中,已知点
在
边上,满足
,
,
,
.
(1)求的长;
(2)求.