设与
是两个单位向量,其夹角为60°,且
.
(1)求;
(2)分别求的模;
(3)求的夹角.
如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=,D是CB延长线上一点,且BD=BC.
(1)求证:直线BC1∥平面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积。
已知锐角△ABC的三内角A、B、C的对边分别是a,b,c.且(b2+c2-a2)tanA=bc.
(1)求角A的大小;
(2)求的值
如图,在四棱锥A-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(2)求证:平面BDE⊥平面SAC;
(3)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.
设是公比大于1的等比数列,Sn为数列
的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列的通项公式;
(2)令,求数列
的前n项和Tn.
已知点及圆
:
.
(Ⅰ)若直线过点
且与圆心
的距离为1,求直线
的方程;
(Ⅱ)设过点P的直线与圆
交于
、
两点,当
时,求以线段
为直径的圆
的方程;
(Ⅲ)设直线与圆
交于
,
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.