设函数,
.
(1)当时,求不等式
的解集;
(2)若不等式对
恒成立,求实数
的取值范围.
、(本题满分12分)已知函数的定义域为集合A,函数
的值域为集合B,求和
。
.已知直线经过椭圆
的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于
轴上方的动点,直线AP,BP与直线
分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在上变化时,讨论S的大小与Q点的个数之间的关系.
. 已知是
的两个内角,a=
i+
j(其中i,j是互相垂直的单位向量),若│a│=
(1)试问是否为定值,若是定值,请求出,否则请说明理由;
(2)求的最大值,并判断此时三角形的形状.
如图,四棱锥的底面
为一直角梯形,其中
,
底面
,
是
的中点.
(1)求证://平面
;
(2)若平面
,求二面角
的余弦值.
已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.
(1)求数列{an}的通项公式;
(2)若数列{an}和数列{bn}满足等式:,求数列{bn}的前n项和Sn.