游客
题文

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心 圆内接四边形的性质
登录免费查看答案和解析
相关试题

ΔABC 中, BAC = 90 ° AB = AC ,点 D 为直线 BC 上一动点(点 D 不与 B C 重合),以 AD 为边在 AD 右侧作正方形 ADEF ,连接 CF

(1)观察猜想

如图1,当点 D 在线段 BC 上时,

BC CF 的位置关系为:  

BC CD CF 之间的数量关系为:  ;(将结论直接写在横线上)

(2)数学思考

如图2,当点 D 在线段 CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点 D 在线段 BC 的延长线上时,延长 BA CF 于点 G ,连接 GE .若已知 AB = 2 2 CD = 1 4 BC ,请求出 GE 的长.

如图,已知 AB 为半圆 O 的直径, C 为半圆 O 上一点,连接 AC BC ,过点 O OD AC 于点 D ,过点 A 作半圆 O 的切线交 OD 的延长线于点 E ,连接 BD 并延长交 AE 于点 F

(1)求证: AE · BC = AD · AB

(2)若半圆 O 的直径为10, sin BAC = 3 5 ,求 AF 的长.

如图,在一条笔直的东西向海岸线 l 上有一长为 1 . 5 km 的码头 MN 和灯塔 C ,灯塔 C 距码头的东端 N 20 km .一轮船以 36 km / h 的速度航行,上午 10 : 00 A 处测得灯塔 C 位于轮船的北偏西 30 ° 方向,上午 10 : 40 B 处测得灯塔 C 位于轮船的北偏东 60 ° 方向,且与灯塔 C 相距 12 km

(1)若轮船照此速度与航向航行,何时到达海岸线?

(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据: 2 1 . 4 3 1 . 7 )

如图,在 ABCD 中,已知 AD > AB

(1)实践与操作:作 BAD 的平分线交 BC 于点 E ,在 AD 上截取 AF = AB ,连接 EF ;(要求:尺规作图,保留作图痕迹,不写作法)

(2)猜想并证明:猜想四边形 ABEF 的形状,并给予证明.

达州市图书馆今年4月23日开放以来,受到市民的广泛关注 . 5 月底,八年级(1)班学生小颖对全班同学这一个多月来去新图书馆的次数做了调查统计,并制成了如图不完整的统计图表.

八年级(1)班学生去新图书馆的次数统计表

去图书馆的次数

0次

1次

2次

3次

4次及以上

人数

8

12

a

10

4

请你根据统计图表中的信息,解答下列问题:

(1)填空: a =    b =   

(2)求扇形统计图中“0次”的扇形所占圆心角的度数;

(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号