游客
题文

已知抛物线.
(1)若直线与抛物线相交于两点,求弦长;
(2)已知△的三个顶点在抛物线上运动.若点在坐标原点,边过定点,点上且,求点的轨迹方程.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本题满分12分)已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点,点关于轴的对称点为.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:();

(本题满分12分) 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)(文科) 求取出的3个球中白色球的个数为2个的概率
(Ⅲ)(理科)设为取出的3个球中白色球的个数,求的分布列和数学期望.

(本题满分12分)如图所示,四棱锥的底面为直角梯形,底面的中点.
(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成的角;
(Ⅲ)求点到平面的距离.

(本题满分12分) 已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求的对称轴方程;
(Ⅲ)求在区间上的最大值和最小值.

(本小题满分14分)
设数列的前项和为,已知为常数,),且成等差数列.
(1)求的值;
(2)求数列的通项公式;
(3)若数列是首项为1,公比为的等比数列,记.证明:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号